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Abstract. Feynman-type series for grand potential�, number of particles, internal energy,
magnetization and susceptibility are derived for systems of noninteracting quantum particles in
an external magnetic field. Numerical calculations at constantN for harmonically trapped systems
of fermions and bosons in the presence of a homogeneous magnetic field are carried out with the
aid of both Feynman-type series and series over single-particle states.N -convergence to universal
curves for chemical potential and energy is presented. At low temperatures magnetization of the
Fermi gas exhibits a pronounced quantum behaviour.

1. Introduction

In [1] we have shown that cycle series presentation of the grand canonical potential� introduced
initially by Feynman for the Bose gas in a box [2] can be extended to systems of noninteracting
bosons or fermions with a spin in an arbitrary external field. Coefficients in this series can be
expressed through a single-particle canonical partition function at increasing values of inverse
temperature. For an exactly solvable Schrödinger problem (e.g., in the case of harmonic field
or Pöschl–Teller potential [3,4]) the single-particle canonical partition function is determined
and hence the potential� and related averages can be easily calculated numerically. We
considered our results mainly in a methodological aspect, i.e. as providing reliable exact
data for checking our PIMC calculations for quantum systems of interacting particles [5, 6].
Meanwhile, experiments on trapped mesoscopic systems at superlow temperatures [7–10] as
well as a series of recent theoretical and numerical studies (e.g. [11–35]) point to a more or
less direct application of results obtained for ideal Bose and Fermi systems.

In this paper we extend our previous study to systems in a magnetic field. Although in the
most general case, i.e. for an inhomogeneous magnetic field, the Hamiltonian of the system
does not split into coordinate and spin parts, the Feynman-type expression for the potential
� still holds due to the absence of interaction between particles. We consider in detail an
example of harmonically trapped quantum gas in the presence of a homogeneous magnetic
field when the single-particle Schrödinger problem has an exactly determined energy spectrum.
This makes it possible to construct a single-particle canonical partition function which enters
into �. The expression for� is then used for obtaining series for the number of particles,
internal energy and magnetization. Magnetic susceptibility is considered in the appendix.
Purely paramagnetic, diamagnetic and general cases of Bose and Fermi systems are then
investigated numerically. In calculations we use Feynman-type series in regions whereµ < 0
and conventional series over single-particle states in the whole range ofµ.
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2. General approach

2.1. Feynman-type series

The starting point is the standard form for the canonical partition function of a system ofN

identical particles [2]:

Z(S,A)(β) = 1

N !

∑
{P }
ξ [P ]Z(D)(β;P) (1)

where(S,A) andξ = ±1 stand for symmetric and antisymmetric cases respectively,(D)

corresponds to a system of distinguishable particles,P denotes permutation, [P ] its parity and
β ≡ T −1.

In the case of noninteracting quantum particles with a spin in an inhomogeneous magnetic
field the Hamiltonian cannot be separated into purely spin and coordinate terms and hence
Z(D)(β) does not split into a product either, as in the absence of magnetic field considered
in [1]. However, the Hamiltonian is still a sum of single-particle terms,Ĥ =∑N

i=1 Ĥ1(i), due
to the absence of interaction, and hence

ρ(x,x′;β) = 〈x|e−βĤ |x′〉 =
N∏
i=1

ρ1(xi, xi
′;β). (2)

Here xi is a set of single-particle variables for theith particle including coordinates and
spin, ρ1(xi, xi

′;β) = 〈xi |e−βĤ1(i)|x ′i〉 is the related density matrix,x = (x1, x2, . . . , xN).
ρ(x,x′;β) is theN -particle density matrix yieldingZ(D)(β;P):

Z(D)(β;P) =
∫
ρ(x, Px;β) dx. (3)

Further analysis is close to that of [1]. Consider that variables(xi) of the firstν particles
in theP permutation are involved in a cycle yielding an independent factor inZ(D)(β;P):

Zν(β) =
∫
ρ1(x1, x2;β)ρ1(x2, x3;β) . . . ρ1(xν, x1;β)

ν∏
i=1

dxi. (4)

HenceZ(D)(β;P) is expressed as a product of such independent terms:

Z(D)(β;P) =
N∏
ν=1

Zν(β)
Cν(P ) (5)

whereCν(P ), a number of cycles of the lengthν, satisfies the condition:

N∑
ν=1

νCν(P ) = N. (6)

ForZ(S,A)(β) in (1) we obtain

Z(S,A)(β) = 1

N !

∑
{P }

N∏
ν=1

[ξ (ν−1)Zν(β)]
Cν(P ) (7)

where we used a relation [1,2]: [P ] =∑ν(ν − 1)Cν(P ).
Now following Feynman [2] (see also [1, 36]) we arrive at an expression for the grand

potential�:

β�(S,A)(β, µ) = −
∞∑
ν=1

fν

ν
fν = ξ (ν−1)Zν(β)λ

ν. (8)
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For coefficientsZν(β) determined in (4) the following relation proved in [1] holds:

Zν(β) = Z1(νβ). (9)

Thus all the coefficients in (8) are expressed through a single-particle canonical partition
function for increasing values of inverse temperature,νβ.

We shall also need expression for� in terms of the single-particle energy spectrumεK
(K stands for a set of single-particle state quantum numbers):

β�(β,µ) = ξ
∑
K

ln(1− ξλe−βεK ). (10)

There is a close relation between forms (8) and (10) for�. Actually, expanding the
logarithm function in (10) (note that it can be carried out only whenλ < 1) and changing the
order of summation in two series, the latter form for� can be transformed into the series over
ν (8) [1] with Zν(β) = Z1(νβ) =

∑
K e−νβεK .

2.2. Averages

Appropriate operations applied to� in forms (8) or (10) yield averages.

The number of particles:

N = −
(
∂�

∂µ

)
β

=
∞∑
ν=1

fν fν ≡ ξν−1Z1(νβ)λ
ν (11)

N =
∑
K

nK nK ≡ 1

eβ(εK−µ) − ξ . (12)

Internal energy:

E = ∂

∂β
(β�)µ +µN = −

∞∑
ν=1

fν
∂ lnZ1(x)

∂x

∣∣∣∣
x=νβ

(13)

E =
∑
K

nKεK. (14)

Magnetization:

M = −∂�
∂B
=
∞∑
ν=1

fν

ν

∂ lnZ1(νβ)

∂B
(15)

M = −
∑
K

nK
∂εK

∂B
. (16)

3. Homogeneous magnetic field

3.1. Energy eigenvalues

In the case of a homogeneous magnetic field,EB = (0, 0, B), the single-particle Hamiltonian
is a sum of coordinate and spin parts,Ĥ1 = Ĥ sp

1 + Ĥ c
1 whereĤ sp

1 = − eh̄
mc
Bŝz, ŝz is the spin

projection operator with eigenvaluesσ , |σ | 6 s, s being the spin of a particle. For electrons,
s = 1

2, σ = ± 1
2. Ĥ c

1 , in its turn, can be presented as a sum of transverse and longitudinal parts:

Ĥ c
1 = Ĥ c

1⊥(B) + Ĥ c
1‖, where the latter does not depend onB. So the Schr̈odinger equation

splits into three independent equations, and eigenvalues ofĤ1 can be presented as

εK ⇒ εEk,σ = εσ + εk⊥ + εk‖ . (17)
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εσ = −2µBBσ , whereµB ≡ eh̄
2mc is the Bohr magneton.εk‖ is an eigenvalue of a one-

dimensional equation for the longitudinal (z) component. In a number of cases (e.g., for
harmonic or P̈oschl–Teller potentials) it has an exact solution.

The transverse equation is a two-dimensional one and includes magnetic field. In the
presence of an additional isotropic harmonic field its Hamiltonian is

Ĥ c
1⊥(B) =

1

2m

(
Êp − e

c
EA
)2

+
mω2(x2 + y2)

2
(18)

where Êp is a two-dimensional vector-operator of momentum and the vector potential,EA, also

lacksz-component sinceEA ⊥ EB. Choosing it asEA = [ EBEr]
2 and introducing polar coordinates

one arrives at an equation which has an exact solution with energy eigenvalues presented
as [37]:

εk⊥ ⇒ εl,n = (2n + |l| + 1)h̄ω̃ − l h̄ωc
2

(19)

with n = 0, 1, 2, . . . ; l = 0,±1,±2, . . . ; ωc = eB
mc

is the cyclotron frequency,̃ω =√
ω2 + (ωc2 )

2 andω is the frequency of the harmonic field.

If in the transverse(x, y) directions the system is limited by hard walls no exact solution
is known and one can use a quasiclassical approximation with ag-fold degenerate energy
spectrum [38,39]:

εk⊥ ⇒ εj = eh̄B

mc

(
j +

1

2

)
. (20)

g = S
2π

eB
h̄c

andS is an area of the walls’ cross section with the(x, y)-plane (the form of the
cross section does not affect the spectrum, see also [23]).

3.2. Harmonically trapped system

For a quantum particle with a spin in an isotropic harmonic field plus homogeneous magnetic
field the energy eigenvalues are determined as

εσkln = −2µBBσ + (k + 1
2)h̄ω + εl,n (21)

where|σ | 6 s; k = 0, 1, . . . ; andεl,n is determined in (19).
The related canonical partition function which enters�-potential (8) can be presented as

a product of spin, longitudinal and transverse factors:

Z1 = Zsp1 Z1‖Z1⊥ (22)

where the spin contribution is

Z
sp

1 =
∑
|σ |6s

e2βµBBσ . (23)

For spinless particlesZsp1 = 1, in the absence of magnetic fieldZsp1 = 2s + 1, for electrons,
s = 1

2, Zsp1 = 2ch(βµBB).
Z1‖ is a partition function for a one-dimensional oscillator:

Z1‖ = 1

2sh( βh̄ω2 )
. (24)

ForZ1⊥ we can write:

Z1⊥ =
∑

06n<∞
e−βh̄ω̃(2n+1)

∑
−∞<l<∞

e−βh̄(ω̃|l|−lωc/2). (25)
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The sum overn yields(eβh̄ω̃ − e−βh̄ω̃)−1 while the sum overm can be easily reduced to

1 +
1

eβh̄ω+ − 1
+

1

eβh̄ω− − 1
(26)

whereω± = ω̃ ± ωc
2 . Combining both expressions we finally obtain forZ1⊥:

Z1⊥ = 1

2sh( βh̄ω+

2 )

1

2sh( βh̄ω−2 )
. (27)

This result (together with (24)) coincides with that of relation (3.4) in [28] where it was obtained
as a trace of the appropriate propagator. So the coordinate part of the canonical partition
function (Zc1) for a particle in an isotropic oscillator field in the presence of a homogeneous
magnetic field appears to be that for a three-dimensional anisotropic oscillator with frequencies
ω, ω+, ω−, the latter two being dependent on magnetic fieldB. Note thatω+ω− = ω2.

Expression (22) forZ1 with (23), (24), (27) forZsp1 , Z1‖ andZ1⊥ is now inserted into
� (8) and averagesN (11),E (13) andM (15).

ForE we get

E =
∞∑
ν=1

fν

(
−µBBth(νβµBB) +

h̄ω

2
cth
νβh̄ω

2
+
h̄ω+

2
cth
νβh̄ω+

2
+
h̄ω−

2
cth
νβh̄ω−

2

)
. (28)

ForM we get

M =
∞∑
ν=1

fνMν Mν ≡ µB th(νβµBB)− eh̄

2mc

1

2

(
ω+

ω̃
cth
νβh̄ω+

2
− ω−

ω̃
cth
νβh̄ω−

2

)
.

(29)

In order to obtain�,N andE in terms of the series over single-particle states one needs simply
to substituteεσkln from (21) into (10), (12) and (14) forεK . M is obtained from (16):

M =
∑
σkln

nσklnMσkln Mσkln ≡
(

2µBσ − eh̄

2mc

(
(2n + |l| + 1)

ωc

2ω̃
− l
))
. (30)

Expressions for magnetic susceptibility are too long so we present them in the appendix.
The high-temperature limit of zero-field susceptibility is obtained there as well.

4. Numerical calculations

4.1. Computational scheme

The computational scheme that we use here mostly follows that of [1]. Series (11) or (12) forN

as a function ofβ,B andµ are treated as equations for determiningµ(β)|B=const dependences
atN fixed. These, in their turn, are inserted into (28), (14) and (29), (30) to getE(β,B) and
M(β,B) at constantN . In calculations ofµ-, E- andM-dependences onN , values ofβ and
B were fixed, while for getting the corresponding dependence onB we fixedβ andN .

In our calculations, similarly to [1], we count the chemical potential from the ground
state. It implies that a combinationεK − µ which enters exponents in both series is
presented asεK − ε0 − (µ − ε0) whereε0 is the ground state energy and a substitution is
made:µ − ε0 ⇒ µ. For systems in a harmonic trap with a homogeneous magnetic field,
ε0 = h̄

2(ω + ω+ + ω−)− 2µBBs.
While making calculations we can separately consider a purely paramagnetic case (a model

of ‘uncharged particles’ withs 6= 0), a purely diamagnetic case (a model of ‘spinless charged
particles’,s = 0) and the general case with complete account for magnetic interactions in (11),
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(28), (29) or (12), (14), (30). In the first ‘pure case’ one needs to make a formal substitution:
eh̄

2mc ⇒ 0,ωc ⇒ 0 while, in the second,µB ⇒ 0 in all the above relations.
Feynman-type series are one-dimensional ones and hence are the most convenient for

computations. Unfortunately, they cannot be used in regions whereµ > 0, i.e. for fermions
at low temperatures. Series over single-particle states are three-dimensional and the number
of terms to be taken into account to achieve the desired accuracy is much greater than in cases
with series over cycles.

In calculations with the second series in the absence of a magnetic field we truncate when
the value of the last term becomes less than a certainδ [1]. On switching on the magnetic field
it was found that the series ceases to be monotonic. This made us change both the order of
summation and the truncation condition. The accuracy of our calculations varies in the range
of δ = 10−5–10−8 dependent on the set of input parameters.

The convergence of cycle series is much faster than for the second one even at low
temperatures (providedµ < 0). Thus for bosons atT < 0.1 (h̄ω units) the number of terms to
be accounted for in the cycle series, 105, is ten times less than for the second series. For cycle
series the required number of terms strongly decreases with the increase of temperature while
for the second one it continues to grow. So, for bosonic systems we could use cycle series in
the whole range of temperatures.

4.2. Temperature dependences

Butts and Rokhsar [11] point to a fact that theµ(T ) dependence in continuous spectrum
approximation for fermions in a harmonic field can be presented by a universal curve (figure 1
in [11], see also [13]). Following a similar line we obtain universal curves forµ(T ) andE(T )
for both systems and present our numerical data at various fixedN in an appropriate scale for
comparison.

In a continuous energy spectrum approximation the expression (12) for fermions with spin
s in an anisotropic harmonic field with frequenciesω1, ω2, ω3 and in the absence of magnetic
field yields

N =
∫ ∞

0

g(ε) dε

eβ(ε−µ) + 1
(31)

with g(ε) = (2s+1)ε2

2h̄3ω1ω2ω3
. The Fermi energy in continuous spectrum approximation isε0

F =
h̄(ω1ω2ω3)

1/3( 6N
2s+1)

1/3.
Now scaling all parameters and variableε in (31) byε0

F we arrive at an expression which
lacksN :

1= 3
∫ ∞

0

x2 dx

eb(x−µ̃) + 1
(32)

wherex ≡ ε/ε0
F , b ≡ βε0

F = (T /ε0
F )
−1, µ̃ ≡ µ/ε0

F .
The desired universal dependenceµ̃(T /ε0

F ) is obtained numerically from (32).
In a similar way one gets a universal curve for the scaled internal energy:

E

Nε0
F

= 3
∫ ∞

0

x3 dx

eb(x−µ̃) + 1
. (33)

The integral is calculated as a function of scaled temperature,T/ε0
F , and of the previously

obtainedµ̃(T /ε0
F ) dependence.

For bosons an appropriate scaling parameter isTc = h̄(ω1ω2ω3)
1/3( N

ζ(3)(2s+1) )
1/3, the

temperature of Bose condensation in continuous spectrum approximation (see, e.g., [1,21,24]):
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Figure 1. Scaled temperature dependences [1] of chemical potential and internal energy (inset) for
systems ofN particles in a 3D isotropic harmonic field. (a) Fermions, curves 1–3 are for values of
N

2s+1 = 10, 100, 1000. (b) Bosons, curves 1–4 are forN2s+1 = 10, 100, 103, 104. Universal curves
are shown by thick curves.

ζ() is theζ -function,ζ(3) = 1.202. So universal curves forµ(T ) and E
NTc

are

1= ζ(3)−1
∫ ∞

0

x2 dx

eb(x−µ̃) − 1
(34)

E

NTc
= ζ(3)−1

∫ ∞
0

x3 dx

eb(x−µ̃) − 1
(35)

wherex ≡ ε/Tc, b ≡ βTc = (T /Tc)−1, µ̃ ≡ µ/Tc for T > Tc andµ̃ = µ = 0 for T 6 Tc.
Scaling implies presentation of ourµ(T ) andE(T ) numerical dependences for fixedN

in ε0
F (or in Tc) units as well as change ofT -scale,T ⇒ T/ε0

F (or T ⇒ T/Tc).
Such scaling of our previous results for systems in an isotropic harmonic field [1] is shown

in figures 1(a) and (b). Convergence to limiting universal curves with the increase ofN is well
observed. It is especially fast for the energy of fermions.



1864 P N Vorontsov-Velyaminov et al

0,00 0,25 0,50 0,75 1,00
-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

ε

µ ε

0,0 0,1 0,2 0,3 0,4 0,5

0,8

1,0

1,2

1,4

1,6

1,8

ε

ε

0,0 0,5 1,0 1,5 2,0
-3,0

-2,5

-2,0

-1,5

-1,0

-0,5

0,0
µ

0,0 0,2 0,4 0,6 0,8 1,0 1,2
0

1

2

3

4

Figure 2. Scaled temperature dependences of chemical potential and internal energy (inset) for
systems ofN particles in a 3D harmonic field plus magnetic field, for the purely diamagnetic case
(s = 0), ωc/ω = 5. (a) Fermions, curves 1–3 are for values ofN = 10, 100, 1000. (b) Bosons,
curves 1–4 are forN = 10, 100, 103, 104; Universal curves are the thick curves.

In the presence of the magnetic field we can expect a similarN -convergence for a purely
diamagnetic system; in this case increasing of the magnetic field is equivalent to the increase
of anisotropy of the oscillator field. Note, also, that although frequenciesω+ andω− depend
onB their product holds constant,ωω+ω− = ω3, so the ‘effective volume’ of the trap does not
depend onB.

In order to check the influence of the magnetic field we made calculations for a single value
of N (N = 10) and a set of increasing values of magnetic fieldB (actually at fixedωc/ω) in
the purely diamagnetic case. For bosons, the increase ofωc/ω results in a monotonic deviation
of curves from that forB = 0. In the interval 06 ωc/ω 6 1 the effect is extremely small
while for higher values ofωc/ω it becomes much greater. Similar features are observed also
for the energy of fermions. For the chemical potential of fermions, on the contrary, changes
are great in the whole range ofωc/ω and the shift of curves with the increase of magnetic field
is nonmonotonic.
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Figure 3. Relative deviation of chemical potential versus temperature for bosons (N = 10,s = 1)
at increasingωc/ω. Curves 1–4 are forωc/ω = 10−4, 10−3, 10−2, 0.1. (inset); curves 5–10 are
for ωc/ω = 0.1, 0.5, 1.0, 5.0, 10.0, 25.0. µ0 is the chemical potential in the absence of a magnetic
field.

0,0 0,5 1,0 1,5 2,0

-0,4

-0,2

0,0

0,2
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0,6
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1,0

Figure 4. M versusT dependence for bosonic system,s = 1, in magnetic fieldωc/ω = 1:
curves 1–3 are forN = 10, 100, 104. Thick curves are for complete magnetization, other curves,
above and below zero, are for the paramagnetic and diamagnetic contributions respectively.

To observeN -convergence for data at constantωc/ω we choose the valueωc/ω = 5.0,
for which the effect of the magnetic field is already great in all cases considered above. In
figure 2 we see a monotonicN -convergence to the universal curves in qualitative accordance
with the results of figure 1.

Similar dependences atωc/ω = 5.0 in the general case, i.e. when we simultaneously
account for both magnetic interactions, showed thatN -convergence to the universal curves
still holds.
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Figure 5. µ versusN dependences for fermions,s = 1
2 , in a 3D isotropic harmonic field at

constantT . At T = 0.01 with magnetic field, curves 1–4 correspond toωc/ω = 0, 0.1, 0.2, 1.0.
In the absence of a magnetic field (inset), curves 5–8 correspond to a set of temperatures
T = 0.01, 0.1, 0.2, 1.0;µ andT are inh̄ω units.

At low temperatures the chemical potential for bosonic systems is very close to zero. So
in order to check clearly the effect of the magnetic field it is convenient to present it as the
relative difference(µ−µ0)/µ0 versusT/Tc for increasing values ofωc/ω, figure 3 (N = 10,
s = 1, complete account for magnetic interaction). At very lowωc/ω (10−4–10−1), inset,
the dependences are monotonic with initial values increasing from 0.04 up to 0.64. Further
increase ofωc/ω does not change this initial value while the whole dependency is changed in
a rather particular way from curve 6 forωc/ω = 0.1 to curve 10 forωc/ω = 25.0.

Temperature dependences of magnetization of bosons,s = 1, with a complete account
for magnetic interaction atωc/ω = 1.0 and for a set ofN , is shown in figure 4. Indicated
are complete values together with their paramagnetic and diamagnetic contributions. Curves
strongly resemble those for magnetics at a phase transition with the ‘critical temperature’
T/Tc = 1. Increase ofN results in a sharpening of the curves in the vicinity of this point.

It should be kept in mind that the presented data are obtained from the grand canonical
expressions and can be treated only as ‘pseudocanonical’. This can differ greatly from true
canonical data in the vicinity of the Bose condensation point, as follows from paper [16] of
Balazs and Bergeman.

4.3. Low-temperature data for fermions

In a recent paper [12], Schneider and Wallis demonstrated an interesting behaviour of chemical
potential and other properties as functions ofT andN for a system of harmonically trapped
spinless fermions atT � 1 (T is in h̄ω units). Thus atT = 0.002,µ(N)-dependence has a
pronounced stepwise character caused by a shell structure of energy levels in a 3D isotropic
harmonic field: this structure is determined by the degeneracy factorg(εk) = (k+1)(k+2)

2 .
The steps in the obtained staircase correspond to completely filled 1, 2, 3, . . . shells with
N = 1, 4, 10, 20, 35, 56, . . . for spinless fermions (or twice that numbers fors = 1

2). The
height of each step equals to 1 (in ¯hω units).
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Figure 6. Specific magnetizationM versusN dependence at fixed magnetic field for fermions,
s = 1

2 , in the purely paramagnetic case,T = 0.01 (h̄ω units). (a) General outlook, curves 1–5
correspond to integer values ofωc/ω = 1, 2, 3, 4, 5; zigzag lines below curve 1, between curves 1
and 2, etc, are for intervals ofωc/ω = 0.05–0.95, 1.05–1.95 etc, respectively; (b) presents a
fragment of (a) with curves 1–3 corresponding toωc/ω = 1.0, 0.95, 0.05. The zigzag line of the
first order should occupy a narrow strip between curves 2 and 3 and is not presented.M is in
µB units.

For a system of fermions,s = 1
2, atT = 0.01 we reproduced the stepwiseN -dependence

for µ and its evolution (smoothing of steps up to their final decay) with increasing temperature
observed in [12] in the absence of magnetic field, see the inset to figure 5. Similar calculations
were performed at increasing values of magnetic field (figure 5). The rise of magnetic field at
T = 0.01 also smooths the steps up to their destruction.

For a better understanding of the phenomena occurring in the system at low temperatures
in the presence of a magnetic field we made a number of calculations of specific magnetization
M, either as a function ofN at constantB (at fixed ratioωc/ω) or as a function ofB (of ωc/ω)
for fixedN . We consider the purely paramagnetic case (‘uncharged fermions’ withs = 1

2), the
purely diamagnetic case (‘charged spinless fermions’) and the general case with inclusion of
both effects into (30). In the general case, magnetization can be separated into paramagnetic
and diamagnetic contributions.
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Figure 7. Specific magnetizationM versus magnetic field (ωc/ω) dependences for a fixed number
of particles. T = 0.01, N/(2s + 1) = 5: thin curve is for the general case (s = 1

2), squares
are for its paramagnetic and diamagnetic contributions (1 and 2), thick curves are for the purely
paramagnetic (s = 1

2) and diamagnetic (s = 0) cases (1 and 2);M is inµB units.

TheN -dependence ofM at T = 0.01 and gradually increasing values ofωc/ω, ranging
from 0 to 5 for the purely paramagnetic case is shown in figure 6. TheM(N) dependences
are presented by zigzag lines of the first, second, third, etc orders, separated by smooth
curves which correspond to integer values ofωc/ω: 0, 1, 2, . . . . The zigzag of the first order
corresponds to values ofωc/ω approximately in the range of 0.05–0.95; the second, in the
range 1.05–1.95, etc. This can be easily understood from figure 6(b) where a fragment of the
whole diagram (figure 6(a)) is shown with lines 2, 3 corresponding toωc/ω = 0.05, 0.95.
The zigzag of the first order is located in a narrow strip between these lines and is omitted
in the figure 6(b). Another important feature is that points of its intersection with theN -axis
(M = 0) are the ‘magic numbers’, i.e. populations of completely filled shells mentioned above:
2, 8, 20, 40, 70, . . . for s = 1

2.
Low-temperature isotherms (T = 0.01) ofM for N = 10 as functions of magnetic field

are presented in figure 7. First of all we see that paramagnetic and diamagnetic contributions
into the mixed case do not coincide with those for pure cases, which are also shown in figure 7.
Hence the combined action of two factors included into magnetic interaction is not reduced to
a simple sum. The change inM due to paramagnetic effect in both pure and mixed cases is a
stepwise monotonic increase ofM in the range of 0< ωc/ω < 2. For the purely paramagnetic
case jumps occur atωc/ω = 0, 1, 2. Magnitudes of jumps are equal to 0.2, 0.6, 0.2, which
corresponds to consecutive reorientation of a spin in the outer (noncompleted) shell with two
fermions, then three spins of the filled shell of six, and finally the last spin of two occupying
the internal filled shell. The diamagnetic part in both cases is a nonmonotonic dependency
of almost linear decreases alternating with stepwise up-jumps occupying the same range of
ωc/ω. Increase of temperature (N = 10,T = 0.1) resulted in a considerable smoothing of the
dependences of figure 7. For greater values ofN the general picture is principally the same,
although the range ofM-oscillations widens and their structure becomes more complicated.
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5. Final remarks

We have extended a Feynman-type presentation of the grand potential� for a system of
noninteracting quantum particles with spin to a case of external magnetic field. Exact
expressions have been derived for harmonically trapped systems in a homogeneous magnetic
field. A computational scheme mostly following our previous work [1] has been applied for
high accuracy calculations ofµ(β,B)-dependences at constant number of particlesN which,
in turn, have been used to calculate internal energyE and magnetizationM as functions
of β,B andN . Feynman-type series as well as series over single-particle states were used.
Temperature dependences for fermionic and bosonic gases are presented in a scaled form and a
convergence to universal curves forµ(β) andE(β) at fixedB are observed. Low-temperature
data for fermionic systems in purely paramagnetic or diamagnetic cases as well as in the
general case of complete account of magnetic interactions exhibit a stepwise or oscillatory
behaviour which is smoothed down as the temperature increases. The applied approach seems
to be promising for obtaining other accurate data for trapped finite systems of noninteracting
quantum particles in an external magnetic field for a wide range of parameters.

In cases when the spectrum is unknown, quasiclassical approximation can be used in
calculating series over single-particle states.
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Appendix

To get the magnetic susceptibility we start with an expression:

χ = ∂M

∂B
. (A.1)

Substituting (29) into (A.1) we obtain

χ =
∞∑
ν=1

(
∂fν

∂B
Mν + fν

∂Mν

∂B

)
≡ χ(1)1 + χ(1)2

χ
(1)
1 ≡ β

∞∑
ν=1

νfνM
2
ν χ

(1)
2 ≡

∞∑
ν=1

fν
∂Mν

∂B
.

(A.2)

Forχ(1)2 we arrive at an expression:

χ
(1)
2 = β

∞∑
ν=1

νfν

{
µ2
B

ch2(νβµBB)
− 1

4

(
eh̄

2mc

)2[(
ω

ω̃

)2 2

νβh̄ω̃

(
cth
νβh̄ω+

2
+ cth

νβh̄ω−
2

)

−
((

ω+

ω̃

)2 1

sh2(
νβh̄ω+

2 )
+

(
ω−
ω̃

)2 1

sh2(
νβh̄ω−

2 )

)]}
. (A.3)

In the absence of magnetic fieldχ(1)1 vanishes andχ(1)2 yields

χ
(1)
2 |B=0 = βµ2

B

∞∑
ν=1

νfν − β
2

(
eh̄

2mc

)2 ∞∑
ν=1

νfν

[
2

νβh̄ω
cth

(
νβh̄ω

2

)
− 1

sh2(
νβh̄ω

2 )

]
. (A.4)
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Applying (A.1) to (30) we obtainχ in the form of a series over single-particle states:

χ =
∑
σkln

(
∂Nσkln

∂B
Mσkln +Nσkln

∂Mσkln

∂B

)
= χ(2)1 + χ(2)2 . (A.5)

Forχ(2)1 andχ(2)2 we get

χ
(2)
1 ≡ β

∑
σkln

N2
σklne

β(εσkln−µ)Mσkln (A.6)

χ
(2)
2 ≡ −2

(
eh̄

2mc

)2 1

h̄ω̃

ω2

ω̃2

∑
σkln

Nσkln(2n + |l| + 1). (A.7)

In the absence of magnetic fieldχ(2)1 = 0 andχ(2)2 yields

χ
(2)
2 |B=0 = −2

(
eh̄

2mc

)2 1

h̄ω

∑
σkln

Nσkln(2n + |l| + 1) (A.8)

with εσkln|B=0 = (k + 2n + |l| + 3
2)h̄ω in Nσkln (12).

Finally, we present the high-temperature limit of the zero field susceptibility obtained
from (A.4) and including paramagnetic and diamagnetic terms respectively:

χ

N

∣∣∣
B=0
β→0

= χ0 = µ2
Bβ −

(
eh̄

2mc

)2
β

3
. (A.9)

So, a relationχdia0 = − 1
3χ

para

0 [39] holds in our case (see also [38]).
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