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Abstract. Feynman-type series for grand potentfa] number of particles, internal energy,
magnetization and susceptibility are derived for systems of noninteracting quantum particles in
an external magnetic field. Numerical calculations at cong¥dior harmonically trapped systems

of fermions and bosons in the presence of a homogeneous magnetic field are carried out with the
aid of both Feynman-type series and series over single-particle stéétesnvergence to universal
curves for chemical potential and energy is presented. At low temperatures magnetization of the
Fermi gas exhibits a pronounced quantum behaviour.

1. Introduction

In[1] we have shown that cycle series presentation of the grand canonical paiEntralduced
initially by Feynman for the Bose gas in a box [2] can be extended to systems of noninteracting
bosons or fermions with a spin in an arbitrary external field. Coefficients in this series can be
expressed through a single-particle canonical partition function at increasing values of inverse
temperature. For an exactly solvable Siinger problem (e.g., in the case of harmonic field

or Poschl-Teller potential [3, 4]) the single-particle canonical partition function is determined
and hence the potenti& and related averages can be easily calculated numerically. We
considered our results mainly in a methodological aspect, i.e. as providing reliable exact
data for checking our PIMC calculations for quantum systems of interacting particles [5, 6].
Meanwhile, experiments on trapped mesoscopic systems at superlow temperatures [7-10] as
well as a series of recent theoretical and numerical studies (e.g. [11-35]) point to a more or
less direct application of results obtained for ideal Bose and Fermi systems.

In this paper we extend our previous study to systems in a magnetic field. Although in the
most general case, i.e. for an inhomogeneous magnetic field, the Hamiltonian of the system
does not split into coordinate and spin parts, the Feynman-type expression for the potential
Q still holds due to the absence of interaction between particles. We consider in detail an
example of harmonically trapped quantum gas in the presence of a homogeneous magnetic
field when the single-particle Sdidinger problem has an exactly determined energy spectrum.
This makes it possible to construct a single-particle canonical partition function which enters
into 2. The expression fof2 is then used for obtaining series for the number of particles,
internal energy and magnetization. Magnetic susceptibility is considered in the appendix.
Purely paramagnetic, diamagnetic and general cases of Bose and Fermi systems are then
investigated numerically. In calculations we use Feynman-type series in regionspwhede
and conventional series over single-particle states in the whole range of
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2. General approach

2.1. Feynman-type series

The starting point is the standard form for the canonical partition function of a systém of
identical particles [2]:

Z50(p) = % > &Mz p: ) (1)
TP

where(S, A) and¢é = +1 stand for symmetric and antisymmetric cases respectiybly,
corresponds to a system of distinguishable partidtedenotes permutationp] its parity and
B = 71

In the case of noninteracting quantum particles with a spin in an inhomogeneous magnetic
field the Hamiltonian cannot be separated into purely spin and coordinate terms and hence
Z™ () does not split into a product either, as in the absence of magnetic field considered
in [1]. However, the Hamiltonian is still a sum of single-particle terfis= Zf\'zl Hi(i), due
to the absence of interaction, and hence

N

p(@. s p) = (xle Py = [] prCxi. /"5 B). 2

i=1
Herex; is a set of single-particle variables for th#h particle including coordinates and
spin, p1(xi, xi'; B) = (x;|e PM@|x]y is the related density matrixg = (x1, x2, ..., xy).
o(x, z'; B) is the N-particle density matrix yielding? (8; P):

zP(B; P) = /p(:c, Px; B) de. 3)

Further analysis is close to that of [1]. Consider that variaptgsof the firstv particles
in the P permutation are involved in a cycle yielding an independent fact@t(s; P):

Z,(B) = / p1(x1, x2; B)p1(x2, x3: B) ... pa(xy, X1 B) ]l! dx;. (4)
Hencez® (B; P) is expressed as a product of such independ;nt terms:
208 Py = [ | 2557 ®)
v=1
whereC, (P), a number of cycles of the length satisfies the condition:
XN: vC,(P) = N. (6)
v=1
For ZS:4(B) in (1) we obtain

1 N
z50@) =5 ) [ E Pz )
TPy v=

v=1

where we used arelation [1,2]P] = Y (v — 1)C,(P).
Now following Feynman [2] (see also [1, 36]) we arrive at an expression for the grand
potential<2:

pRED (B, ) = — fo fo=8"Z,p). ®)
y=1
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For coefficientsZ, (8) determined in (4) the following relation proved in [1] holds:
Z,(B) = Z1(vP). 9)

Thus all the coefficients in (8) are expressed through a single-particle canonical partition
function for increasing values of inverse temperatupe,

We shall also need expression farin terms of the single-particle energy spectrem
(K stands for a set of single-particle state quantum numbers):

BQUB, 1) =& Y In(L—Ere ). (10)
K

There is a close relation between forms (8) and (10)<tor Actually, expanding the
logarithm function in (10) (note that it can be carried out only whena 1) and changing the
order of summation in two series, the latter form fdcan be transformed into the series over

v (8) [1] with Z,(8) = Z1(vB) = Y_ 4 €~
2.2. Averages

Appropriate operations applied fin forms (8) or (10) yield averages.

The number of particles:

a2 -
T (@) ="t L =ETZi0pR (11)
B v=1
1

Internal energy:

i o 9InZy(x)
E =35 BDutuN = ; fo —- . (13)
E = Z}’ZKEK. (14)
K
Magnetization:
V- _Q _ S alnZ1(vB) (15)
0B v JdB

Fib:

= nx (16)
K

3. Homogeneous magnetic field

3.1. Energy eigenvalues

In the case of a homogeneous magnetic leId; (0,0, B), the smgle partlcle Hamiltonian

is a sum of coordinate and spin parés, = H,” + H{ whereH;” = <L B, §. is the spin
projection operator with eigenvalues [o| < s, s bemg the spin of a partlcle For electrons,

s = ; o= il Hl‘, inits turn, can be presented as a sum of transverse and longitudinal parts:

H = Hf (B) + HfH, where the latter does not depend Bn So the Schisdinger equation
splits into three independent equations, and eigenvalug ofin be presented as

EK = &[5 = &0 &1, & a7
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& = —2upBo, whereup = ﬁ is the Bohr magnetong,, is an eigenvalue of a one-
dimensional equation for the longitudinal) (component. In a number of cases (e.g., for
harmonic or Bschl-Teller potentials) it has an exact solution.
The transverse equation is a two-dimensional one and includes magnetic field. In the
presence of an additional isotropic harmonic field its Hamiltonian is
20,2 2
R e R (18)

wherep is a two-dimensional vector-operator of momentum and the vector potettialso
lacksz-component sincel L. B. Choosing it asA = [%1 and introducing polar coordinates

one arrives at an equation which has an exact solution with energy eigenvalues presented
as [37]:

e, = &, = 2n + 1] + Dhd (19)

withn = 0,1,2,...;1] = 0,1, +2,...; w, = % is the cyclotron frequencyp =

w? + (%)% andw is the frequency of the harmonic field.
If in the transverséx, y) directions the system is limited by hard walls no exact solution

is known and one can use a quasiclassical approximation wgtiodd degenerate energy
spectrum [38, 39]:

ehB [ 1
gkL:>8.f=W<]+§>' (20)

g = » %2 andS is an area of the walls’ cross section with e y)-plane (the form of the

cross section does not affect the spectrum, see also [23]).

3.2. Harmonically trapped system

For a quantum particle with a spin in an isotropic harmonic field plus homogeneous magnetic
field the energy eigenvalues are determined as

Eokin = —2upBo + (k + Hhw + &, (21)

wherelo| < s;k=0,1,...;andg,, is determined in (19).
The related canonical partition function which ent@rpotential (8) can be presented as
a product of spin, longitudinal and transverse factors:

Z1= 27171, (22)
where the spin contribution is
zy" =) ehmbo, (23)
lo|<s

For spinless particleg,” = 1, in the absence of magnetic fieh})” = 2s + 1, for electrons,
s = 3,2 =2ch(BugB).
Zy is a partition function for a one-dimensional oscillator:

1
20 = S (24)
25h )
For Z,, we can write:
Z e—ﬂﬁ&)(bﬁl) Z e—ﬁﬁ(cf)lll—lwf/Z). (25)

0<n<oo —oo<l<oo
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The sum over yields (e/#® — e=#h@)~1 while the sum ovem can be easily reduced to

1 1
1+ efhos _ 1 + efho- _ 1 (26)

wherew, = o + % Combining both expressions we finally obtain oy, :
1 1
ZSI.( Bho. ) Zsl,.( ﬂh—a)

This result (together with (24)) coincides with that of relation (3.4) in [28] where it was obtained
as a trace of the appropriate propagator. So the coordinate part of the canonical partition
function (Z7) for a particle in an isotropic oscillator field in the presence of a homogeneous
magnetic field appears to be that for a three-dimensional anisotropic oscillator with frequencies
w, ws, w_, the latter two being dependent on magnetic figld\Note thatw,w_ = w?.

Expression (22) foz, with (23), (24), (27) forZy”, Zy; and Zy, is now inserted into
Q2 (8) and average¥ (11), E (13) andM (15).

Z1 = (27)

For E we get
> v,Bha) hws | vBhws ho_ | vBho_
E = " Bth B +— cth cth + cth . (28
>~ 1 (<namtnspiens) S e ). (29)
For M we get
> eh 1 (ws , vBhwy w_  vBho_
M = WM, M, h B) — ——=| —cth — —cth .
Zf 1pth(vB1ep B) 2m62<w ct —cth— )

(29)

In order to obtairf2, N andE in terms of the series over single-particle states one needs simply
to substitutes,4;,, from (21) into (10), (12) and (14) fary. M is obtained from (16):

M = U%nmmm Mo = <2u30 - 2— (@ +m+n3s - 1)) (30)
Expressions for magnetic susceptibility are too long so we present them in the appendix.
The high-temperature limit of zero-field susceptibility is obtained there as well.

4. Numerical calculations

4.1. Computational scheme

The computational scheme that we use here mostly follows that of [1]. Series (11) or (42) for
as a function of8, B andu are treated as equations for determini(@)| s—...s: dependences
at N fixed. These, in their turn, are inserted into (28), (14) and (29), (30) t& ¢et B) and

M (B, B) at constaniV. In calculations of«-, E- and M-dependences oN, values of8 and

B were fixed, while for getting the corresponding dependence wre fixeds andN.

In our calculations, similarly to [1], we count the chemical potential from the ground
state. It implies that a combinatioty — © which enters exponents in both series is
presented asx — go — (u — &o) Wheregg is the ground state energy and a substitution is
made: u — eg = p. For systems in a harmonic trap with a homogeneous magnetic field,
g0 = g(a) +wstw_) —2ugBs.

While making calculations we can separately consider a purely paramagnetic case (amodel
of ‘uncharged particles’ with £ 0), a purely diamagnetic case (a model of ‘spinless charged
particles’,s = 0) and the general case with complete account for magnetic interactions in (11),
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(28), (29) or (12), (14), (30). In the first ‘pure case’ one needs to make a formal substitution:
26,,’:(‘ = 0, w. = 0 while, in the secondyz = 0 in all the above relations.

Feynman-type series are one-dimensional ones and hence are the most convenient for
computations. Unfortunately, they cannot be used in regions where0, i.e. for fermions
at low temperatures. Series over single-particle states are three-dimensional and the number
of terms to be taken into account to achieve the desired accuracy is much greater than in cases
with series over cycles.

In calculations with the second series in the absence of a magnetic field we truncate when
the value of the last term becomes less than a cettdih On switching on the magnetic field
it was found that the series ceases to be monotonic. This made us change both the order of
summation and the truncation condition. The accuracy of our calculations varies in the range
of § = 107°-10"8 dependent on the set of input parameters.

The convergence of cycle series is much faster than for the second one even at low
temperatures (provided < 0). Thus for bosons & < 0.1 (hw units) the number of terms to
be accounted for in the cycle series?1i8 ten times less than for the second series. For cycle
series the required number of terms strongly decreases with the increase of temperature while
for the second one it continues to grow. So, for bosonic systems we could use cycle series in
the whole range of temperatures.

4.2. Temperature dependences

Butts and Rokhsar [11] point to a fact that th€T) dependence in continuous spectrum
approximation for fermions in a harmonic field can be presented by a universal curve (figure 1
in [11], see also [13]). Following a similar line we obtain universal curvegddr) andE (T)
for both systems and present our numerical data at various fixedcan appropriate scale for
comparison.

In a continuous energy spectrum approximation the expression (12) for fermions with spin
s in an anisotropic harmonic field with frequencies w;, w3 and in the absence of magnetic

field yields
o0
_ g(e) de
N_/O - + 1 (31)
with g(e) = % The Fermi energy in continuous spectrum approximatiosf.is=

h(w10o03)Y3(255) 3.

Now scaling all parameters and variabla (31) bys% we arrive at an expression which

lacksN:
©  x2dx
1=3 fo o] (32)

wherex = ¢/6%, b = % = (T/e%) 72, i = /el
The desired universal dependericd /%) is obtained numerically from (32).
In a similar way one gets a universal curve for the scaled internal energy:

E ©  x3dx
— =3 _— 33
Ne?F /0 ePt-i + 1 (33)

The integral is calculated as a function of scaled temperafiyteh, and of the previously
obtainedii(7'/¢%) dependence.

For bosons an appropriate scaling parametef,. is= E(wlwzwg)m(m)m, the
temperature of Bose condensation in continuous spectrum approximation (see, e.g., [1,21,24]):
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Figure 1. Scaled temperature dependences [1] of chemical potential and internal energy (inset) for
systems ofV particles in a 3D isotropic harmonic fielda)(Fermions, curves 1-3 are for values of

a1 = 10, 100, 1000. ) Bosons, curves 1-4 are fgf; = 10,100, 10% 10%. Universal curves

are shown by thick curves.

£ () is thez-function, ¢ (3) = 1.202. So universal curves for(T) and% are

00 2
. 1 x<dx
1=¢@7 | gom_1 (34)
00 3
B 1 x°dx
N, — 4O fo e (35)

wherex = ¢/T.,b= BT, = (T/T.) Y p=u/T.forT > T, andjp = u =0forT < T..

Scaling implies presentation of our7) and E(T) numerical dependences for fixad
in €% (or in 7..) units as well as change @f-scale,l = T/&% (or T = T/T.).

Such scaling of our previous results for systems in an isotropic harmonic field [1] is shown
in figures 14) and ). Convergence to limiting universal curves with the increas€ o« well
observed. It is especially fast for the energy of fermions.
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Figure 2. Scaled temperature dependences of chemical potential and internal energy (inset) for
systems ofV particles in a 3D harmonic field plus magnetic field, for the purely diamagnetic case
(s =0),w./0w = 5. (@) Fermions, curves 1-3 are for valuesif= 10, 100, 1000. k) Bosons,
curves 1-4 are foN = 10, 100, 10%, 10*; Universal curves are the thick curves.

In the presence of the magnetic field we can expect a silNitaonvergence for a purely
diamagnetic system; in this case increasing of the magnetic field is equivalent to the increase
of anisotropy of the oscillator field. Note, also, that although frequengieendw_ depend
on B their product holds constantw.w_ = »?, so the ‘effective volume’ of the trap does not
depend omB.

In order to check the influence of the magnetic field we made calculations for a single value
of N (N = 10) and a set of increasing values of magnetic fielgactually at fixedw, /w) in
the purely diamagnetic case. For bosons, the increasg/afresults in a monotonic deviation
of curves from that folB = 0. In the interval 0< w./w < 1 the effect is extremely small
while for higher values o, /@ it becomes much greater. Similar features are observed also
for the energy of fermions. For the chemical potential of fermions, on the contrary, changes
are great in the whole range @f /w and the shift of curves with the increase of magnetic field
is nonmonotonic.
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0 (Ko )1,

075 1,00\ T/T

T T c

15 2,0

Figure 3. Relative deviation of chemical potential versus temperature for bodoas 10,s = 1)

at increasingy. /w. Curves 1-4 are fap./w = 1074, 1073, 1072, 0.1. (inset); curves 5-10 are
forw./w = 0.1,0.5, 1.0, 5.0, 10.0, 25.0. uo is the chemical potential in the absence of a magnetic
field.

M

TIT,
T T T T T T T c
0,0 0,5 1,0 15 2,0

Figure 4. M versusT dependence for bosonic system= 1, in magnetic fieldv./w = 1:
curves 1-3 are foN = 10, 100, 10*. Thick curves are for complete magnetization, other curves,
above and below zero, are for the paramagnetic and diamagnetic contributions respectively.

To observeN-convergence for data at constant/w we choose the value./o = 5.0,
for which the effect of the magnetic field is already great in all cases considered above. In
figure 2 we see a monotoni¢-convergence to the universal curves in qualitative accordance
with the results of figure 1.

Similar dependences at./w = 5.0 in the general case, i.e. when we simultaneously
account for both magnetic interactions, showed Matonvergence to the universal curves
still holds.
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0
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r I r I r T : I r
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Figure 5. u versusN dependences for fermions, = % in a 3D isotropic harmonic field at

constant’’. At 7 = 0.01 with magnetic field, curves 1-4 correspondgw = 0, 0.1, 0.2, 1.0.
In the absence of a magnetic field (inset), curves 5-8 correspond to a set of temperatures
T =0.01,0.1,0.2,1.0; u andT are inAw units.

At low temperatures the chemical potential for bosonic systems is very close to zero. So
in order to check clearly the effect of the magnetic field it is convenient to present it as the
relative difference&u — o)/ o versusr'/ T, for increasing values ab,. /o, figure 3 (v = 10,

s = 1, complete account for magnetic interaction). At very lewe (104-1071), inset,

the dependences are monotonic with initial values increasing from 0.04 up to 0.64. Further
increase ofv./w does not change this initial value while the whole dependency is changed in
a rather particular way from curve 6 far./w = 0.1 to curve 10 forw, /@ = 25.0.

Temperature dependences of magnetization of bososs,1, with a complete account
for magnetic interaction ab./w = 1.0 and for a set ofV, is shown in figure 4. Indicated
are complete values together with their paramagnetic and diamagnetic contributions. Curves
strongly resemble those for magnetics at a phase transition with the ‘critical temperature’
T/T. = 1. Increase oN results in a sharpening of the curves in the vicinity of this point.

It should be kept in mind that the presented data are obtained from the grand canonical
expressions and can be treated only as ‘pseudocanonical’. This can differ greatly from true
canonical data in the vicinity of the Bose condensation point, as follows from paper [16] of
Balazs and Bergeman.

4.3. Low-temperature data for fermions

Inarecent paper [12], Schneider and Wallis demonstrated an interesting behaviour of chemical
potential and other properties as functionsodnd N for a system of harmonically trapped
spinless fermions & <« 1 (T is in hw units). Thus af” = 0.002, . (N)-dependence has a
pronounced stepwise character caused by a shell structure of energy levels in a 3D isotropic
harmonic field: this structure is determined by the degeneracy factpy = “2E2,

The steps in the obtained staircase correspond to completely fill2d3.1 .. shells with

N = 1,4,10, 20, 35,56, . .. for spinless fermions (or twice that numbers foe= %). The

height of each step equals to 1 {im units).
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0,0
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Figure 6. Specific magnetizatio versusN dependence at fixed magnetic field for fermions,
s = % in the purely paramagnetic case,= 0.01 (:w units). @) General outlook, curves 1-5
correspond to integer values®f /o = 1, 2, 3, 4, 5; zigzag lines below curve 1, between curves 1
and 2, etc, are for intervals @./w = 0.05-095, 105-195 etc, respectively;b) presents a
fragment of &) with curves 1-3 corresponding &9 /o = 1.0, 0.95, 0.05. The zigzag line of the
first order should occupy a narrow strip between curves 2 and 3 and is not preséntisdn

/L Units.

For a system of fermions,= % atT = 0.01 we reproduced the stepwidedependence
for . and its evolution (smoothing of steps up to their final decay) with increasing temperature
observed in [12] in the absence of magnetic field, see the inset to figure 5. Similar calculations
were performed at increasing values of magnetic field (figure 5). The rise of magnetic field at
T = 0.01 also smooths the steps up to their destruction.

For a better understanding of the phenomena occurring in the system at low temperatures
in the presence of a magnetic field we made a number of calculations of specific magnetization
M, either as a function a¥ at constanB (at fixed ratiow,. /w) or as a function oB (of w./w)
for fixed N. We consider the purely paramagnetic case (‘uncharged fermionss witlé), the
purely diamagnetic case (‘charged spinless fermions’) and the general case with inclusion of
both effects into (30). In the general case, magnetization can be separated into paramagnetic
and diamagnetic contributions.
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Figure 7. Specific magnetizatiod versus magnetic fields(. /w) dependences for a fixed number

of particles. T = 0.01, N/(2s + 1) = 5: thin curve is for the general case £ %), squares

are for its paramagnetic and diamagnetic contributions (1 and 2), thick curves are for the purely
paramagnetics(= %) and diamagnetics(= 0) cases (1 and 2)// is in g units.

The N-dependence aff at T = 0.01 and gradually increasing valueswaf/w, ranging
from 0O to 5 for the purely paramagnetic case is shown in figure 6. M¥) dependences
are presented by zigzag lines of the first, second, third, etc orders, separated by smooth
curves which correspond to integer valueswpfw: 0, 1, 2, .... The zigzag of the first order
corresponds to values af./w approximately in the range of @—Q95; the second, in the
range 105-195, etc. This can be easily understood from figut®) @(here a fragment of the
whole diagram (figure &) is shown with lines 2, 3 corresponding é9 /w = 0.05, 0.95.
The zigzag of the first order is located in a narrow strip between these lines and is omitted
in the figure 66). Another important feature is that points of its intersection withAhaxis
(M = 0) are the ‘magic numbers’, i.e. populations of completely filled shells mentioned above:
2,8,20,40,70,...fors = 1.

Low-temperature isothermgd' (= 0.01) of M for N = 10 as functions of magnetic field
are presented in figure 7. First of all we see that paramagnetic and diamagnetic contributions
into the mixed case do not coincide with those for pure cases, which are also shown in figure 7.
Hence the combined action of two factors included into magnetic interaction is not reduced to
a simple sum. The change M due to paramagnetic effect in both pure and mixed cases is a
stepwise monotonic increaseMfin the range of O< w./w < 2. For the purely paramagnetic
case jumps occur ab./w = 0, 1, 2. Magnitudes of jumps are equal t®200.6, 0.2, which
corresponds to consecutive reorientation of a spin in the outer (honcompleted) shell with two
fermions, then three spins of the filled shell of six, and finally the last spin of two occupying
the internal filled shell. The diamagnetic part in both cases is a nonmonotonic dependency
of almost linear decreases alternating with stepwise up-jumps occupying the same range of
w./w. Increase of temperatur®’(= 10,7 = 0.1) resulted in a considerable smoothing of the
dependences of figure 7. For greater value&’ dhe general picture is principally the same,
although the range ad¥f-oscillations widens and their structure becomes more complicated.
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5. Final remarks

We have extended a Feynman-type presentation of the grand pot@ntial a system of
noninteracting quantum particles with spin to a case of external magnetic field. Exact
expressions have been derived for harmonically trapped systems in a homogeneous magnetic
field. A computational scheme mostly following our previous work [1] has been applied for
high accuracy calculations ¢f(8, B)-dependences at constant number of partidleshich,
in turn, have been used to calculate internal endfggnd magnetizatio as functions
of B, B and N. Feynman-type series as well as series over single-particle states were used.
Temperature dependences for fermionic and bosonic gases are presented in a scaled form and a
convergence to universal curves fof8) andE (8) at fixed B are observed. Low-temperature
data for fermionic systems in purely paramagnetic or diamagnetic cases as well as in the
general case of complete account of magnetic interactions exhibit a stepwise or oscillatory
behaviour which is smoothed down as the temperature increases. The applied approach seems
to be promising for obtaining other accurate data for trapped finite systems of noninteracting
quantum particles in an external magnetic field for a wide range of parameters.

In cases when the spectrum is unknown, quasiclassical approximation can be used in
calculating series over single-particle states.
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Appendix
To get the magnetic susceptibility we start with an expression:

=—. (A1)
Substituting (29) into (A.1) we obtain

afy
x—Z(aB fu )—x(1)+x(l)

v=1 (A.2)

1’ =8 Z vAIM ) = Z fu

For x.” we arrive at an expression:

e 1< ek )T(e)z 2 ( vBhws vﬁﬁw)
'BX_;f{Chz(v,BuBB) ame) |\&) vgip\Sh—2— teth—;

(%) s (%) i)}

In the absence of magnetic field” vanishes ang." yields

) V‘BE(X) 1
= S () S e () - i | 89
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Applying (A.1) to (30) we obtairy in the form of a series over single-particle states:

ONokin OMyiin @, ©
— Myiin + Nopin——— | = + . A.5
X a%( 9B kin ki 9B > X1 X2 (A.5)
For x\? andy,? we get
(2) — ﬂ Z Noz-kl eﬂ(aoun M)Makln (A6)
okln
eh \? 1 w?
x5 = 2(%) = ~2;Nakln(2n+|l|+1)- (A7)
In the absence of magnetic fig)d” = 0 andy,? yields
32 |=0 = —2 Y ZNak,n<2n+|l|+1> (A8)
- 2mc h okln

With £ginl5—0 = (k + 2n + |I| + 3)he IN Nown (12).
Finally, we present the high-temperature limit of the zero field susceptibility obtained
from (A.4) and including paramagnetic and diamagnetic terms respectively:

X _ _ 2 /3 eﬁ 2 ﬁ (A 9)
Nl = X015 ome) 3 '
So, arelationy§® = —%x{*"* [39] holds in our case (see also [38]).
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